Actual source code: ex5.c
1: static char help[] = "Nonlinear, time-dependent. Developed from radiative_surface_balance.c \n";
2: /*
3: Contributed by Steve Froehlich, Illinois Institute of Technology
5: Usage:
6: mpiexec -n <np> ./ex5 [options]
7: ./ex5 -help [view petsc options]
8: ./ex5 -ts_type sundials -ts_view
9: ./ex5 -da_grid_x 20 -da_grid_y 20 -log_view
10: ./ex5 -da_grid_x 20 -da_grid_y 20 -ts_type rosw -ts_atol 1.e-6 -ts_rtol 1.e-6
11: ./ex5 -drawcontours -draw_pause 0.1 -draw_fields 0,1,2,3,4
12: */
14: /*
15: -----------------------------------------------------------------------
17: Governing equations:
19: R = s*(Ea*Ta^4 - Es*Ts^4)
20: SH = p*Cp*Ch*wind*(Ta - Ts)
21: LH = p*L*Ch*wind*B(q(Ta) - q(Ts))
22: G = k*(Tgnd - Ts)/dz
24: Fnet = R + SH + LH + G
26: du/dt = -u*(du/dx) - v*(du/dy) - 2*omeg*sin(lat)*v - (1/p)*(dP/dx)
27: dv/dt = -u*(dv/dx) - v*(dv/dy) + 2*omeg*sin(lat)*u - (1/p)*(dP/dy)
28: dTs/dt = Fnet/(Cp*dz) - Div([u*Ts, v*Ts]) + D*Lap(Ts)
29: = Fnet/(Cs*dz) - u*(dTs/dx) - v*(dTs/dy) + D*(Ts_xx + Ts_yy)
30: dp/dt = -Div([u*p,v*p])
31: = - u*dp/dx - v*dp/dy
32: dTa/dt = Fnet/Cp
34: Equation of State:
36: P = p*R*Ts
38: -----------------------------------------------------------------------
40: Program considers the evolution of a two dimensional atmosphere from
41: sunset to sunrise. There are two components:
42: 1. Surface energy balance model to compute diabatic dT (Fnet)
43: 2. Dynamical model using simplified primitive equations
45: Program is to be initiated at sunset and run to sunrise.
47: Inputs are:
48: Surface temperature
49: Dew point temperature
50: Air temperature
51: Temperature at cloud base (if clouds are present)
52: Fraction of sky covered by clouds
53: Wind speed
54: Precipitable water in centimeters
55: Wind direction
57: Inputs are are read in from the text file ex5_control.txt. To change an
58: input value use ex5_control.txt.
60: Solvers:
61: Backward Euler = default solver
62: Sundials = fastest and most accurate, requires Sundials libraries
64: This model is under development and should be used only as an example
65: and not as a predictive weather model.
66: */
68: #include <petscts.h>
69: #include <petscdm.h>
70: #include <petscdmda.h>
72: /* stefan-boltzmann constant */
73: #define SIG 0.000000056703
74: /* absorption-emission constant for surface */
75: #define EMMSFC 1
76: /* amount of time (seconds) that passes before new flux is calculated */
77: #define TIMESTEP 1
79: /* variables of interest to be solved at each grid point */
80: typedef struct {
81: PetscScalar Ts,Ta; /* surface and air temperature */
82: PetscScalar u,v; /* wind speed */
83: PetscScalar p; /* density */
84: } Field;
86: /* User defined variables. Used in solving for variables of interest */
87: typedef struct {
88: DM da; /* grid */
89: PetscScalar csoil; /* heat constant for layer */
90: PetscScalar dzlay; /* thickness of top soil layer */
91: PetscScalar emma; /* emission parameter */
92: PetscScalar wind; /* wind speed */
93: PetscScalar dewtemp; /* dew point temperature (moisture in air) */
94: PetscScalar pressure1; /* sea level pressure */
95: PetscScalar airtemp; /* temperature of air near boundary layer inversion */
96: PetscScalar Ts; /* temperature at the surface */
97: PetscScalar fract; /* fraction of sky covered by clouds */
98: PetscScalar Tc; /* temperature at base of lowest cloud layer */
99: PetscScalar lat; /* Latitude in degrees */
100: PetscScalar init; /* initialization scenario */
101: PetscScalar deep_grnd_temp; /* temperature of ground under top soil surface layer */
102: } AppCtx;
104: /* Struct for visualization */
105: typedef struct {
106: PetscBool drawcontours; /* flag - 1 indicates drawing contours */
107: PetscViewer drawviewer;
108: PetscInt interval;
109: } MonitorCtx;
111: /* Inputs read in from text file */
112: struct in {
113: PetscScalar Ts; /* surface temperature */
114: PetscScalar Td; /* dewpoint temperature */
115: PetscScalar Tc; /* temperature of cloud base */
116: PetscScalar fr; /* fraction of sky covered by clouds */
117: PetscScalar wnd; /* wind speed */
118: PetscScalar Ta; /* air temperature */
119: PetscScalar pwt; /* precipitable water */
120: PetscScalar wndDir; /* wind direction */
121: PetscScalar lat; /* latitude */
122: PetscReal time; /* time in hours */
123: PetscScalar init;
124: };
126: /* functions */
127: extern PetscScalar emission(PetscScalar); /* sets emission/absorption constant depending on water vapor content */
128: extern PetscScalar calc_q(PetscScalar); /* calculates specific humidity */
129: extern PetscScalar mph2mpers(PetscScalar); /* converts miles per hour to meters per second */
130: extern PetscScalar Lconst(PetscScalar); /* calculates latent heat constant taken from Satellite estimates of wind speed and latent heat flux over the global oceans., Bentamy et al. */
131: extern PetscScalar fahr_to_cel(PetscScalar); /* converts Fahrenheit to Celsius */
132: extern PetscScalar cel_to_fahr(PetscScalar); /* converts Celsius to Fahrenheit */
133: extern PetscScalar calcmixingr(PetscScalar, PetscScalar); /* calculates mixing ratio */
134: extern PetscScalar cloud(PetscScalar); /* cloud radiative parameterization */
135: extern PetscErrorCode FormInitialSolution(DM,Vec,void*); /* Specifies initial conditions for the system of equations (PETSc defined function) */
136: extern PetscErrorCode RhsFunc(TS,PetscReal,Vec,Vec,void*); /* Specifies the user defined functions (PETSc defined function) */
137: extern PetscErrorCode Monitor(TS,PetscInt,PetscReal,Vec,void*); /* Specifies output and visualization tools (PETSc defined function) */
138: extern PetscErrorCode readinput(struct in *put); /* reads input from text file */
139: extern PetscErrorCode calcfluxs(PetscScalar, PetscScalar, PetscScalar, PetscScalar, PetscScalar, PetscScalar*); /* calculates upward IR from surface */
140: extern PetscErrorCode calcfluxa(PetscScalar, PetscScalar, PetscScalar, PetscScalar*); /* calculates downward IR from atmosphere */
141: extern PetscErrorCode sensibleflux(PetscScalar, PetscScalar, PetscScalar, PetscScalar*); /* calculates sensible heat flux */
142: extern PetscErrorCode potential_temperature(PetscScalar, PetscScalar, PetscScalar, PetscScalar, PetscScalar*); /* calculates potential temperature */
143: extern PetscErrorCode latentflux(PetscScalar, PetscScalar, PetscScalar, PetscScalar, PetscScalar*); /* calculates latent heat flux */
144: extern PetscErrorCode calc_gflux(PetscScalar, PetscScalar, PetscScalar*); /* calculates flux between top soil layer and underlying earth */
146: int main(int argc,char **argv)
147: {
149: PetscInt time; /* amount of loops */
150: struct in put;
151: PetscScalar rh; /* relative humidity */
152: PetscScalar x; /* memory varialbe for relative humidity calculation */
153: PetscScalar deep_grnd_temp; /* temperature of ground under top soil surface layer */
154: PetscScalar emma; /* absorption-emission constant for air */
155: PetscScalar pressure1 = 101300; /* surface pressure */
156: PetscScalar mixratio; /* mixing ratio */
157: PetscScalar airtemp; /* temperature of air near boundary layer inversion */
158: PetscScalar dewtemp; /* dew point temperature */
159: PetscScalar sfctemp; /* temperature at surface */
160: PetscScalar pwat; /* total column precipitable water */
161: PetscScalar cloudTemp; /* temperature at base of cloud */
162: AppCtx user; /* user-defined work context */
163: MonitorCtx usermonitor; /* user-defined monitor context */
164: TS ts;
165: SNES snes;
166: DM da;
167: Vec T,rhs; /* solution vector */
168: Mat J; /* Jacobian matrix */
169: PetscReal ftime,dt;
170: PetscInt steps,dof = 5;
171: PetscBool use_coloring = PETSC_TRUE;
172: MatFDColoring matfdcoloring = 0;
173: PetscBool monitor_off = PETSC_FALSE;
175: PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
177: /* Inputs */
178: readinput(&put);
180: sfctemp = put.Ts;
181: dewtemp = put.Td;
182: cloudTemp = put.Tc;
183: airtemp = put.Ta;
184: pwat = put.pwt;
186: PetscPrintf(PETSC_COMM_WORLD,"Initial Temperature = %g\n",(double)sfctemp); /* input surface temperature */
188: deep_grnd_temp = sfctemp - 10; /* set underlying ground layer temperature */
189: emma = emission(pwat); /* accounts for radiative effects of water vapor */
191: /* Converts from Fahrenheit to Celsuis */
192: sfctemp = fahr_to_cel(sfctemp);
193: airtemp = fahr_to_cel(airtemp);
194: dewtemp = fahr_to_cel(dewtemp);
195: cloudTemp = fahr_to_cel(cloudTemp);
196: deep_grnd_temp = fahr_to_cel(deep_grnd_temp);
198: /* Converts from Celsius to Kelvin */
199: sfctemp += 273;
200: airtemp += 273;
201: dewtemp += 273;
202: cloudTemp += 273;
203: deep_grnd_temp += 273;
205: /* Calculates initial relative humidity */
206: x = calcmixingr(dewtemp,pressure1);
207: mixratio = calcmixingr(sfctemp,pressure1);
208: rh = (x/mixratio)*100;
210: PetscPrintf(PETSC_COMM_WORLD,"Initial RH = %.1f percent\n\n",(double)rh); /* prints initial relative humidity */
212: time = 3600*put.time; /* sets amount of timesteps to run model */
214: /* Configure PETSc TS solver */
215: /*------------------------------------------*/
217: /* Create grid */
218: DMDACreate2d(PETSC_COMM_WORLD,DM_BOUNDARY_PERIODIC,DM_BOUNDARY_PERIODIC,DMDA_STENCIL_STAR,20,20,PETSC_DECIDE,PETSC_DECIDE,dof,1,NULL,NULL,&da);
219: DMSetFromOptions(da);
220: DMSetUp(da);
221: DMDASetUniformCoordinates(da, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
223: /* Define output window for each variable of interest */
224: DMDASetFieldName(da,0,"Ts");
225: DMDASetFieldName(da,1,"Ta");
226: DMDASetFieldName(da,2,"u");
227: DMDASetFieldName(da,3,"v");
228: DMDASetFieldName(da,4,"p");
230: /* set values for appctx */
231: user.da = da;
232: user.Ts = sfctemp;
233: user.fract = put.fr; /* fraction of sky covered by clouds */
234: user.dewtemp = dewtemp; /* dew point temperature (mositure in air) */
235: user.csoil = 2000000; /* heat constant for layer */
236: user.dzlay = 0.08; /* thickness of top soil layer */
237: user.emma = emma; /* emission parameter */
238: user.wind = put.wnd; /* wind spped */
239: user.pressure1 = pressure1; /* sea level pressure */
240: user.airtemp = airtemp; /* temperature of air near boundar layer inversion */
241: user.Tc = cloudTemp; /* temperature at base of lowest cloud layer */
242: user.init = put.init; /* user chosen initiation scenario */
243: user.lat = 70*0.0174532; /* converts latitude degrees to latitude in radians */
244: user.deep_grnd_temp = deep_grnd_temp; /* temp in lowest ground layer */
246: /* set values for MonitorCtx */
247: usermonitor.drawcontours = PETSC_FALSE;
248: PetscOptionsHasName(NULL,NULL,"-drawcontours",&usermonitor.drawcontours);
249: if (usermonitor.drawcontours) {
250: PetscReal bounds[] = {1000.0,-1000., -1000.,-1000., 1000.,-1000., 1000.,-1000., 1000,-1000, 100700,100800};
251: PetscViewerDrawOpen(PETSC_COMM_WORLD,0,0,0,0,300,300,&usermonitor.drawviewer);
252: PetscViewerDrawSetBounds(usermonitor.drawviewer,dof,bounds);
253: }
254: usermonitor.interval = 1;
255: PetscOptionsGetInt(NULL,NULL,"-monitor_interval",&usermonitor.interval,NULL);
257: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
258: Extract global vectors from DA;
259: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
260: DMCreateGlobalVector(da,&T);
261: VecDuplicate(T,&rhs); /* r: vector to put the computed right hand side */
263: TSCreate(PETSC_COMM_WORLD,&ts);
264: TSSetProblemType(ts,TS_NONLINEAR);
265: TSSetType(ts,TSBEULER);
266: TSSetRHSFunction(ts,rhs,RhsFunc,&user);
268: /* Set Jacobian evaluation routine - use coloring to compute finite difference Jacobian efficiently */
269: DMSetMatType(da,MATAIJ);
270: DMCreateMatrix(da,&J);
271: TSGetSNES(ts,&snes);
272: if (use_coloring) {
273: ISColoring iscoloring;
274: DMCreateColoring(da,IS_COLORING_GLOBAL,&iscoloring);
275: MatFDColoringCreate(J,iscoloring,&matfdcoloring);
276: MatFDColoringSetFromOptions(matfdcoloring);
277: MatFDColoringSetUp(J,iscoloring,matfdcoloring);
278: ISColoringDestroy(&iscoloring);
279: MatFDColoringSetFunction(matfdcoloring,(PetscErrorCode (*)(void))SNESTSFormFunction,ts);
280: SNESSetJacobian(snes,J,J,SNESComputeJacobianDefaultColor,matfdcoloring);
281: } else {
282: SNESSetJacobian(snes,J,J,SNESComputeJacobianDefault,NULL);
283: }
285: /* Define what to print for ts_monitor option */
286: PetscOptionsHasName(NULL,NULL,"-monitor_off",&monitor_off);
287: if (!monitor_off) {
288: TSMonitorSet(ts,Monitor,&usermonitor,NULL);
289: }
290: FormInitialSolution(da,T,&user);
291: dt = TIMESTEP; /* initial time step */
292: ftime = TIMESTEP*time;
293: PetscPrintf(PETSC_COMM_WORLD,"time %D, ftime %g hour, TIMESTEP %g\n",time,(double)(ftime/3600),(double)dt);
295: TSSetTimeStep(ts,dt);
296: TSSetMaxSteps(ts,time);
297: TSSetMaxTime(ts,ftime);
298: TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);
299: TSSetSolution(ts,T);
300: TSSetDM(ts,da);
302: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
303: Set runtime options
304: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
305: TSSetFromOptions(ts);
307: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
308: Solve nonlinear system
309: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
310: TSSolve(ts,T);
311: TSGetSolveTime(ts,&ftime);
312: TSGetStepNumber(ts,&steps);
313: PetscPrintf(PETSC_COMM_WORLD,"Solution T after %g hours %D steps\n",(double)(ftime/3600),steps);
315: if (matfdcoloring) {MatFDColoringDestroy(&matfdcoloring);}
316: if (usermonitor.drawcontours) {
317: PetscViewerDestroy(&usermonitor.drawviewer);
318: }
319: MatDestroy(&J);
320: VecDestroy(&T);
321: VecDestroy(&rhs);
322: TSDestroy(&ts);
323: DMDestroy(&da);
325: PetscFinalize();
326: return ierr;
327: }
328: /*****************************end main program********************************/
329: /*****************************************************************************/
330: /*****************************************************************************/
331: /*****************************************************************************/
332: PetscErrorCode calcfluxs(PetscScalar sfctemp, PetscScalar airtemp, PetscScalar emma, PetscScalar fract, PetscScalar cloudTemp, PetscScalar *flux)
333: {
335: *flux = SIG*((EMMSFC*emma*PetscPowScalarInt(airtemp,4)) + (EMMSFC*fract*(1 - emma)*PetscPowScalarInt(cloudTemp,4)) - (EMMSFC*PetscPowScalarInt(sfctemp,4))); /* calculates flux using Stefan-Boltzmann relation */
336: return(0);
337: }
339: PetscErrorCode calcfluxa(PetscScalar sfctemp, PetscScalar airtemp, PetscScalar emma, PetscScalar *flux) /* this function is not currently called upon */
340: {
341: PetscScalar emm = 0.001;
344: *flux = SIG*(-emm*(PetscPowScalarInt(airtemp,4))); /* calculates flux usinge Stefan-Boltzmann relation */
345: return(0);
346: }
347: PetscErrorCode sensibleflux(PetscScalar sfctemp, PetscScalar airtemp, PetscScalar wind, PetscScalar *sheat)
348: {
349: PetscScalar density = 1; /* air density */
350: PetscScalar Cp = 1005; /* heat capicity for dry air */
351: PetscScalar wndmix; /* temperature change from wind mixing: wind*Ch */
354: wndmix = 0.0025 + 0.0042*wind; /* regression equation valid for neutral and stable BL */
355: *sheat = density*Cp*wndmix*(airtemp - sfctemp); /* calculates sensible heat flux */
356: return(0);
357: }
359: PetscErrorCode latentflux(PetscScalar sfctemp, PetscScalar dewtemp, PetscScalar wind, PetscScalar pressure1, PetscScalar *latentheat)
360: {
361: PetscScalar density = 1; /* density of dry air */
362: PetscScalar q; /* actual specific humitity */
363: PetscScalar qs; /* saturation specific humidity */
364: PetscScalar wndmix; /* temperature change from wind mixing: wind*Ch */
365: PetscScalar beta = .4; /* moisture availability */
366: PetscScalar mr; /* mixing ratio */
367: PetscScalar lhcnst; /* latent heat of vaporization constant = 2501000 J/kg at 0c */
368: /* latent heat of saturation const = 2834000 J/kg */
369: /* latent heat of fusion const = 333700 J/kg */
372: wind = mph2mpers(wind); /* converts wind from mph to meters per second */
373: wndmix = 0.0025 + 0.0042*wind; /* regression equation valid for neutral BL */
374: lhcnst = Lconst(sfctemp); /* calculates latent heat of evaporation */
375: mr = calcmixingr(sfctemp,pressure1); /* calculates saturation mixing ratio */
376: qs = calc_q(mr); /* calculates saturation specific humidty */
377: mr = calcmixingr(dewtemp,pressure1); /* calculates mixing ratio */
378: q = calc_q(mr); /* calculates specific humidty */
380: *latentheat = density*wndmix*beta*lhcnst*(q - qs); /* calculates latent heat flux */
381: return(0);
382: }
384: PetscErrorCode potential_temperature(PetscScalar temp, PetscScalar pressure1, PetscScalar pressure2, PetscScalar sfctemp, PetscScalar *pottemp)
385: {
386: PetscScalar kdry; /* poisson constant for dry atmosphere */
387: PetscScalar pavg; /* average atmospheric pressure */
388: /* PetscScalar mixratio; mixing ratio */
389: /* PetscScalar kmoist; poisson constant for moist atmosphere */
392: /* mixratio = calcmixingr(sfctemp,pressure1); */
394: /* initialize poisson constant */
395: kdry = 0.2854;
396: /* kmoist = 0.2854*(1 - 0.24*mixratio); */
398: pavg = ((0.7*pressure1)+pressure2)/2; /* calculates simple average press */
399: *pottemp = temp*(PetscPowScalar((pressure1/pavg),kdry)); /* calculates potential temperature */
400: return(0);
401: }
402: extern PetscScalar calcmixingr(PetscScalar dtemp, PetscScalar pressure1)
403: {
404: PetscScalar e; /* vapor pressure */
405: PetscScalar mixratio; /* mixing ratio */
407: dtemp = dtemp - 273; /* converts from Kelvin to Celsuis */
408: e = 6.11*(PetscPowScalar(10,((7.5*dtemp)/(237.7+dtemp)))); /* converts from dew point temp to vapor pressure */
409: e = e*100; /* converts from hPa to Pa */
410: mixratio = (0.622*e)/(pressure1 - e); /* computes mixing ratio */
411: mixratio = mixratio*1; /* convert to g/Kg */
413: return mixratio;
414: }
415: extern PetscScalar calc_q(PetscScalar rv)
416: {
417: PetscScalar specific_humidity; /* define specific humidity variable */
418: specific_humidity = rv/(1 + rv); /* calculates specific humidity */
419: return specific_humidity;
420: }
422: PetscErrorCode calc_gflux(PetscScalar sfctemp, PetscScalar deep_grnd_temp, PetscScalar* Gflux)
423: {
424: PetscScalar k; /* thermal conductivity parameter */
425: PetscScalar n = 0.38; /* value of soil porosity */
426: PetscScalar dz = 1; /* depth of layer between soil surface and deep soil layer */
427: PetscScalar unit_soil_weight = 2700; /* unit soil weight in kg/m^3 */
430: k = ((0.135*(1-n)*unit_soil_weight) + 64.7)/(unit_soil_weight - (0.947*(1-n)*unit_soil_weight)); /* dry soil conductivity */
431: *Gflux = (k*(deep_grnd_temp - sfctemp)/dz); /* calculates flux from deep ground layer */
432: return(0);
433: }
434: extern PetscScalar emission(PetscScalar pwat)
435: {
436: PetscScalar emma;
438: emma = 0.725 + 0.17*PetscLog10Real(PetscRealPart(pwat));
440: return emma;
441: }
442: extern PetscScalar cloud(PetscScalar fract)
443: {
444: PetscScalar emma = 0;
446: /* modifies radiative balance depending on cloud cover */
447: if (fract >= 0.9) emma = 1;
448: else if (0.9 > fract && fract >= 0.8) emma = 0.9;
449: else if (0.8 > fract && fract >= 0.7) emma = 0.85;
450: else if (0.7 > fract && fract >= 0.6) emma = 0.75;
451: else if (0.6 > fract && fract >= 0.5) emma = 0.65;
452: else if (0.4 > fract && fract >= 0.3) emma = emma*1.086956;
453: return emma;
454: }
455: extern PetscScalar Lconst(PetscScalar sfctemp)
456: {
457: PetscScalar Lheat;
458: sfctemp -=273; /* converts from kelvin to celsius */
459: Lheat = 4186.8*(597.31 - 0.5625*sfctemp); /* calculates latent heat constant */
460: return Lheat;
461: }
462: extern PetscScalar mph2mpers(PetscScalar wind)
463: {
464: wind = ((wind*1.6*1000)/3600); /* converts wind from mph to meters per second */
465: return wind;
466: }
467: extern PetscScalar fahr_to_cel(PetscScalar temp)
468: {
469: temp = (5*(temp-32))/9; /* converts from farhrenheit to celsuis */
470: return temp;
471: }
472: extern PetscScalar cel_to_fahr(PetscScalar temp)
473: {
474: temp = ((temp*9)/5) + 32; /* converts from celsuis to farhrenheit */
475: return temp;
476: }
477: PetscErrorCode readinput(struct in *put)
478: {
479: int i;
480: char x;
481: FILE *ifp;
482: double tmp;
485: ifp = fopen("ex5_control.txt", "r");
486: if (!ifp) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_OPEN,"Unable to open input file");
487: for (i=0; i<110; i++) { if (fscanf(ifp, "%c", &x) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");}
488: if (fscanf(ifp, "%lf", &tmp) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");
489: put->Ts = tmp;
491: for (i=0; i<43; i++) { if (fscanf(ifp, "%c", &x) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");}
492: if (fscanf(ifp, "%lf", &tmp) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");
493: put->Td = tmp;
495: for (i=0; i<43; i++) { if (fscanf(ifp, "%c", &x) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");}
496: if (fscanf(ifp, "%lf", &tmp) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");
497: put->Ta = tmp;
499: for (i=0; i<43; i++) { if (fscanf(ifp, "%c", &x) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");}
500: if (fscanf(ifp, "%lf", &tmp)!= 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");
501: put->Tc = tmp;
503: for (i=0; i<43; i++) { if (fscanf(ifp, "%c", &x) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");}
504: if (fscanf(ifp, "%lf", &tmp) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");
505: put->fr = tmp;
507: for (i=0; i<43; i++) {if (fscanf(ifp, "%c", &x) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");}
508: if (fscanf(ifp, "%lf", &tmp) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");
509: put->wnd = tmp;
511: for (i=0; i<43; i++) {if (fscanf(ifp, "%c", &x) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");}
512: if (fscanf(ifp, "%lf", &tmp) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");
513: put->pwt = tmp;
515: for (i=0; i<43; i++) {if (fscanf(ifp, "%c", &x) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");}
516: if (fscanf(ifp, "%lf", &tmp) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");
517: put->wndDir = tmp;
519: for (i=0; i<43; i++) {if (fscanf(ifp, "%c", &x) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");}
520: if (fscanf(ifp, "%lf", &tmp) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");
521: put->time = tmp;
523: for (i=0; i<63; i++) {if (fscanf(ifp, "%c", &x) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");}
524: if (fscanf(ifp, "%lf", &tmp) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_READ,"Unable to read file");
525: put->init = tmp;
526: return(0);
527: }
529: /* ------------------------------------------------------------------- */
530: PetscErrorCode FormInitialSolution(DM da,Vec Xglobal,void *ctx)
531: {
533: AppCtx *user = (AppCtx*)ctx; /* user-defined application context */
534: PetscInt i,j,xs,ys,xm,ym,Mx,My;
535: Field **X;
538: DMDAGetInfo(da,PETSC_IGNORE,&Mx,&My,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,
539: PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE);
541: /* Get pointers to vector data */
542: DMDAVecGetArray(da,Xglobal,&X);
544: /* Get local grid boundaries */
545: DMDAGetCorners(da,&xs,&ys,NULL,&xm,&ym,NULL);
547: /* Compute function over the locally owned part of the grid */
549: if (user->init == 1) {
550: for (j=ys; j<ys+ym; j++) {
551: for (i=xs; i<xs+xm; i++) {
552: X[j][i].Ts = user->Ts - i*0.0001;
553: X[j][i].Ta = X[j][i].Ts - 5;
554: X[j][i].u = 0;
555: X[j][i].v = 0;
556: X[j][i].p = 1.25;
557: if ((j == 5 || j == 6) && (i == 4 || i == 5)) X[j][i].p += 0.00001;
558: if ((j == 5 || j == 6) && (i == 12 || i == 13)) X[j][i].p += 0.00001;
559: }
560: }
561: } else {
562: for (j=ys; j<ys+ym; j++) {
563: for (i=xs; i<xs+xm; i++) {
564: X[j][i].Ts = user->Ts;
565: X[j][i].Ta = X[j][i].Ts - 5;
566: X[j][i].u = 0;
567: X[j][i].v = 0;
568: X[j][i].p = 1.25;
569: }
570: }
571: }
573: /* Restore vectors */
574: DMDAVecRestoreArray(da,Xglobal,&X);
575: return(0);
576: }
578: /*
579: RhsFunc - Evaluates nonlinear function F(u).
581: Input Parameters:
582: . ts - the TS context
583: . t - current time
584: . Xglobal - input vector
585: . F - output vector
586: . ptr - optional user-defined context, as set by SNESSetFunction()
588: Output Parameter:
589: . F - rhs function vector
590: */
591: PetscErrorCode RhsFunc(TS ts,PetscReal t,Vec Xglobal,Vec F,void *ctx)
592: {
593: AppCtx *user = (AppCtx*)ctx; /* user-defined application context */
594: DM da = user->da;
596: PetscInt i,j,Mx,My,xs,ys,xm,ym;
597: PetscReal dhx,dhy;
598: Vec localT;
599: Field **X,**Frhs; /* structures that contain variables of interest and left hand side of governing equations respectively */
600: PetscScalar csoil = user->csoil; /* heat constant for layer */
601: PetscScalar dzlay = user->dzlay; /* thickness of top soil layer */
602: PetscScalar emma = user->emma; /* emission parameter */
603: PetscScalar wind = user->wind; /* wind speed */
604: PetscScalar dewtemp = user->dewtemp; /* dew point temperature (moisture in air) */
605: PetscScalar pressure1 = user->pressure1; /* sea level pressure */
606: PetscScalar airtemp = user->airtemp; /* temperature of air near boundary layer inversion */
607: PetscScalar fract = user->fract; /* fraction of the sky covered by clouds */
608: PetscScalar Tc = user->Tc; /* temperature at base of lowest cloud layer */
609: PetscScalar lat = user->lat; /* latitude */
610: PetscScalar Cp = 1005.7; /* specific heat of air at constant pressure */
611: PetscScalar Rd = 287.058; /* gas constant for dry air */
612: PetscScalar diffconst = 1000; /* diffusion coefficient */
613: PetscScalar f = 2*0.0000727*PetscSinScalar(lat); /* coriolis force */
614: PetscScalar deep_grnd_temp = user->deep_grnd_temp; /* temp in lowest ground layer */
615: PetscScalar Ts,u,v,p;
616: PetscScalar u_abs,u_plus,u_minus,v_abs,v_plus,v_minus;
618: PetscScalar sfctemp1,fsfc1,Ra;
619: PetscScalar sheat; /* sensible heat flux */
620: PetscScalar latentheat; /* latent heat flux */
621: PetscScalar groundflux; /* flux from conduction of deep ground layer in contact with top soil */
622: PetscInt xend,yend;
625: DMGetLocalVector(da,&localT);
626: DMDAGetInfo(da,PETSC_IGNORE,&Mx,&My,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE);
628: dhx = (PetscReal)(Mx-1)/(5000*(Mx-1)); /* dhx = 1/dx; assume 2D space domain: [0.0, 1.e5] x [0.0, 1.e5] */
629: dhy = (PetscReal)(My-1)/(5000*(Mx-1)); /* dhy = 1/dy; */
631: /*
632: Scatter ghost points to local vector,using the 2-step process
633: DAGlobalToLocalBegin(),DAGlobalToLocalEnd().
634: By placing code between these two statements, computations can be
635: done while messages are in transition.
636: */
637: DMGlobalToLocalBegin(da,Xglobal,INSERT_VALUES,localT);
638: DMGlobalToLocalEnd(da,Xglobal,INSERT_VALUES,localT);
640: /* Get pointers to vector data */
641: DMDAVecGetArrayRead(da,localT,&X);
642: DMDAVecGetArray(da,F,&Frhs);
644: /* Get local grid boundaries */
645: DMDAGetCorners(da,&xs,&ys,NULL,&xm,&ym,NULL);
647: /* Compute function over the locally owned part of the grid */
648: /* the interior points */
649: xend=xs+xm; yend=ys+ym;
650: for (j=ys; j<yend; j++) {
651: for (i=xs; i<xend; i++) {
652: Ts = X[j][i].Ts; u = X[j][i].u; v = X[j][i].v; p = X[j][i].p; /*P = X[j][i].P; */
654: sfctemp1 = (double)Ts;
655: calcfluxs(sfctemp1,airtemp,emma,fract,Tc,&fsfc1); /* calculates surface net radiative flux */
656: sensibleflux(sfctemp1,airtemp,wind,&sheat); /* calculate sensible heat flux */
657: latentflux(sfctemp1,dewtemp,wind,pressure1,&latentheat); /* calculates latent heat flux */
658: calc_gflux(sfctemp1,deep_grnd_temp,&groundflux); /* calculates flux from earth below surface soil layer by conduction */
659: calcfluxa(sfctemp1,airtemp,emma,&Ra); /* Calculates the change in downward radiative flux */
660: fsfc1 = fsfc1 + latentheat + sheat + groundflux; /* adds radiative, sensible heat, latent heat, and ground heat flux yielding net flux */
662: /* convective coefficients for upwinding */
663: u_abs = PetscAbsScalar(u);
664: u_plus = .5*(u + u_abs); /* u if u>0; 0 if u<0 */
665: u_minus = .5*(u - u_abs); /* u if u <0; 0 if u>0 */
667: v_abs = PetscAbsScalar(v);
668: v_plus = .5*(v + v_abs); /* v if v>0; 0 if v<0 */
669: v_minus = .5*(v - v_abs); /* v if v <0; 0 if v>0 */
671: /* Solve governing equations */
672: /* P = p*Rd*Ts; */
674: /* du/dt -> time change of east-west component of the wind */
675: Frhs[j][i].u = - u_plus*(u - X[j][i-1].u)*dhx - u_minus*(X[j][i+1].u - u)*dhx /* - u(du/dx) */
676: - v_plus*(u - X[j-1][i].u)*dhy - v_minus*(X[j+1][i].u - u)*dhy /* - v(du/dy) */
677: -(Rd/p)*(Ts*(X[j][i+1].p - X[j][i-1].p)*0.5*dhx + p*0*(X[j][i+1].Ts - X[j][i-1].Ts)*0.5*dhx) /* -(R/p)[Ts(dp/dx)+ p(dTs/dx)] */
678: /* -(1/p)*(X[j][i+1].P - X[j][i-1].P)*dhx */
679: + f*v;
681: /* dv/dt -> time change of north-south component of the wind */
682: Frhs[j][i].v = - u_plus*(v - X[j][i-1].v)*dhx - u_minus*(X[j][i+1].v - v)*dhx /* - u(dv/dx) */
683: - v_plus*(v - X[j-1][i].v)*dhy - v_minus*(X[j+1][i].v - v)*dhy /* - v(dv/dy) */
684: -(Rd/p)*(Ts*(X[j+1][i].p - X[j-1][i].p)*0.5*dhy + p*0*(X[j+1][i].Ts - X[j-1][i].Ts)*0.5*dhy) /* -(R/p)[Ts(dp/dy)+ p(dTs/dy)] */
685: /* -(1/p)*(X[j+1][i].P - X[j-1][i].P)*dhy */
686: -f*u;
688: /* dT/dt -> time change of temperature */
689: Frhs[j][i].Ts = (fsfc1/(csoil*dzlay)) /* Fnet/(Cp*dz) diabatic change in T */
690: -u_plus*(Ts - X[j][i-1].Ts)*dhx - u_minus*(X[j][i+1].Ts - Ts)*dhx /* - u*(dTs/dx) advection x */
691: -v_plus*(Ts - X[j-1][i].Ts)*dhy - v_minus*(X[j+1][i].Ts - Ts)*dhy /* - v*(dTs/dy) advection y */
692: + diffconst*((X[j][i+1].Ts - 2*Ts + X[j][i-1].Ts)*dhx*dhx /* + D(Ts_xx + Ts_yy) diffusion */
693: + (X[j+1][i].Ts - 2*Ts + X[j-1][i].Ts)*dhy*dhy);
695: /* dp/dt -> time change of */
696: Frhs[j][i].p = -u_plus*(p - X[j][i-1].p)*dhx - u_minus*(X[j][i+1].p - p)*dhx /* - u*(dp/dx) */
697: -v_plus*(p - X[j-1][i].p)*dhy - v_minus*(X[j+1][i].p - p)*dhy; /* - v*(dp/dy) */
699: Frhs[j][i].Ta = Ra/Cp; /* dTa/dt time change of air temperature */
700: }
701: }
703: /* Restore vectors */
704: DMDAVecRestoreArrayRead(da,localT,&X);
705: DMDAVecRestoreArray(da,F,&Frhs);
706: DMRestoreLocalVector(da,&localT);
707: return(0);
708: }
710: PetscErrorCode Monitor(TS ts,PetscInt step,PetscReal time,Vec T,void *ctx)
711: {
712: PetscErrorCode ierr;
713: const PetscScalar *array;
714: MonitorCtx *user = (MonitorCtx*)ctx;
715: PetscViewer viewer = user->drawviewer;
716: PetscReal norm;
719: VecNorm(T,NORM_INFINITY,&norm);
721: if (step%user->interval == 0) {
722: VecGetArrayRead(T,&array);
723: PetscPrintf(PETSC_COMM_WORLD,"step %D, time %8.1f, %6.4f, %6.4f, %6.4f, %6.4f, %6.4f, %6.4f\n",step,(double)time,(double)(((array[0]-273)*9)/5 + 32),(double)(((array[1]-273)*9)/5 + 32),(double)array[2],(double)array[3],(double)array[4],(double)array[5]);
724: VecRestoreArrayRead(T,&array);
725: }
727: if (user->drawcontours) {
728: VecView(T,viewer);
729: }
730: return(0);
731: }
733: /*TEST
735: build:
736: requires: !complex !single
738: test:
739: args: -ts_max_steps 130 -monitor_interval 60
740: output_file: output/ex5.out
741: requires: !complex !single
742: localrunfiles: ex5_control.txt
744: test:
745: suffix: 2
746: nsize: 4
747: args: -ts_max_steps 130 -monitor_interval 60
748: output_file: output/ex5.out
749: localrunfiles: ex5_control.txt
750: requires: !complex !single
752: TEST*/