next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.00005257 seconds elapsed
 -- 0.000636885 seconds elapsed
 -- 0.00015953 seconds elapsed
 -- 0.00005285 seconds elapsed
 -- 0.000742227 seconds elapsed
 -- 0.000134171 seconds elapsed
 -- 0.000042781 seconds elapsed
 -- 0.00004082 seconds elapsed
 -- 0.000111251 seconds elapsed
 -- 0.00005221 seconds elapsed
 -- 0.000492215 seconds elapsed
 -- 0.000128961 seconds elapsed
 -- 0.00005226 seconds elapsed
 -- 0.000471464 seconds elapsed
 -- 0.000127262 seconds elapsed
 -- 0.000050991 seconds elapsed
 -- 0.000454713 seconds elapsed
 -- 0.000124861 seconds elapsed
 -- 0.00005262 seconds elapsed
 -- 0.000517705 seconds elapsed
 -- 0.000129151 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000049851 seconds elapsed
 -- 0.000592564 seconds elapsed
 -- 0.000129021 seconds elapsed
 -- 0.000050121 seconds elapsed
 -- 0.000521674 seconds elapsed
 -- 0.000128561 seconds elapsed
 -- 0.00005112 seconds elapsed
 -- 0.000479905 seconds elapsed
 -- 0.000148762 seconds elapsed
 -- 0.000049091 seconds elapsed
 -- 0.000485784 seconds elapsed
 -- 0.000125031 seconds elapsed
 -- 0.00005128 seconds elapsed
 -- 0.000502524 seconds elapsed
 -- 0.000126631 seconds elapsed
 -- 0.000049551 seconds elapsed
 -- 0.000514204 seconds elapsed
 -- 0.000128421 seconds elapsed
 -- 0.000055391 seconds elapsed
 -- 0.000607115 seconds elapsed
 -- 0.000136261 seconds elapsed
 -- 0.000064471 seconds elapsed
 -- 0.000568005 seconds elapsed
 -- 0.000134451 seconds elapsed
 -- 0.000049311 seconds elapsed
 -- 0.000499025 seconds elapsed
 -- 0.000126852 seconds elapsed
 -- 0.00004977 seconds elapsed
 -- 0.000486484 seconds elapsed
 -- 0.000126761 seconds elapsed
 -- 0.000050149 seconds elapsed
 -- 0.000476845 seconds elapsed
 -- 0.000127871 seconds elapsed
 -- 0.00005094 seconds elapsed
 -- 0.000515574 seconds elapsed
 -- 0.000130801 seconds elapsed
 -- 0.000052741 seconds elapsed
 -- 0.000731227 seconds elapsed
 -- 0.000214642 seconds elapsed
 -- 0.000050741 seconds elapsed
 -- 0.000722386 seconds elapsed
 -- 0.000220482 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.