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minIni is a programmer’s library to read and write “ini” files in embedded systems. minIni

takes little resources, has a deterministic memory footprint, and can be configured for various
kinds of file I/O libraries.

The principal purpose for minIni is to be used on embedded systems that run on an RTOS
(or even without any operating system). minIni requires that such a system provides a kind of
storage and file I/O system, but it does not require that this file I/O system is compatible with
the standard C/C++ library —indeed, the standard library is often too big and resource-hungry
for embedded systems.
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Introduction

minIni is a library to read and write simple configuration files with a format compatible with
“ini” files. The minIni library features a small code size footprint and it requires little resources
(e.g. RAM). It is therefore suitable for use in (small) embedded systems.

Ini files are best known from Microsoft Windows, where functions like GetProfileString and
WriteProfileString read from and write to ini files. The functions in minIni are modelled
after the functions of the Windows SDK, but they are not fully compatible with them.

Although the main feature of minIni is that it is small and minimal, it has a few other features:

⋄ minIni supports reading keys that are outside a section, and it thereby supports configuration
files that do not use sections (but that are otherwise compatible with ini files).

⋄ You may use a colon to separate key and value; the colon is equivalent to the equal sign. That
is, the strings “Name: Value” and “Name=Value” have the same meaning.

⋄ The hash character (“#”) is an alternative for the semicolon to start a comment. Trailing
comments (i.e. behind a key/value pair on a line) are allowed.

⋄ Leading and trailing white space around key names and values is ignored.

⋄ When writing a value that contains a comment character (“;” or “#”), that value will auto-
matically be put between double quotes; when reading the value, these quotes are removed.
When a double-quote itself appears in the setting, these characters are escaped.

⋄ Section and key enumeration are supported.

⋄ You can optionally set the line termination (for text files) that minIni will use. (This is a
compile-time setting, not a run-time setting.)

⋄ Since writing speed is much lower than reading speed in Flash memory (SD/MMC cards,
USB memory sticks), minIni minimizes “file writes” at the expense of double “file reads”.

⋄ The memory footprint is deterministic. There is no dynamic memory allocation. The library
is designed to be used in multi-tasking environments, but see section Multi-tasking on page 7
for the limitations.

Limitations

minIni’s design is aimed at being full-featured while using a small and deterministic memory
footprint. It is not optimized for speed. On performance-sensitive code, I advice to read any
values or settings that are needed ahead of the time and to store these in variables.

Specifically, minIni does not cache any key/value pairs that it reads from the ini file. It also
does not keep the ini file open between calls; minIni closes the file after every read or write
operation. When writing to an ini file, minIni creates a temporary file into which it copies
(with modifications) the original file. On success, it deletes the original file and renames the
temporary file back.

Version 1.2 of the library has a function to browse through all settings in an ini file in one go.
When you design your program to retrieve all settings on start-up, function ini browse is the
quickest way to retrieve the settings.

INI file syntax

Ini files have a simple syntax with name/value pairs in a plain text file. The name must be
unique (per section) and the value must fit on a single line. An ini file is commonly separated
into sections —in minIni, this is optional. A section is a name between square brackets, like
“[Network]” in the following example.
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Listing: Example INI file

[Network]

hostname = My Computer

address = dhcp

dns = 192.168.1.1

In the API and in this documentation, the “name” for a setting is denoted as the key for the
setting. The key and the value are separated by an equal sign (“=”). minIni supports the colon
(“:”) as an alternative to the equal sign for the key/value delimiter.

Section and key name comparisons are case insensitive in minIni (as is the case in the Microsoft
Windows API). In the ini file, you may type “DNS = 192.168.1.1” equally well (and meaning
the same thing) as “dns = 192.168.1.1”.

Leading a trailing spaces around values or key names are removed. If you need to include leading
and/or trailing spaces in a value, put the value between double quotes. The ini gets function
strips off the double quotes from the returned value. Function ini puts adds double quotes if
the value to write contains trailing white space (or special characters).

minIni ignores spaces around the “=” or “:” delimiters, but it does not ignore spaces between
the brackets in a section name. In other words, it is best not to put spaces behind the opening
bracket “[” or before the closing bracket “]” of a section name.

Comments in the ini must start with a semicolon (“;”) or a hash character (“#”), and run to
the end of the line. A comment can be a line of its own, or it may follow a key/value pair.
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Using minIni

The first step in using minIni is making sure that it compiles. The library consists of only one
C file and two header files, so the amount of configuration to do is minimal. If you cannot
use the standard C/C++ library, there is, however, a configuration file (or “glue” file) that you
must make or customize; this file is explained in the next section. The minIni distribution
comes with a default configuration file that maps to the standard C library (specifically the file
I/O functions from the “stdio” package) and example glue files for two embedded file system
libraries for embedded systems —see appendix A of this manual.

Once you have a good glue file, you can add the source file of minIni to your project and include
the header file “minIni.h” in your source code files. In your source code, you can then use the
functions in the minIni library to read text and values from ini files and to write text and values
to an ini file. See the function reference for details.

minIni uses string functions from the standard C/C++ library, including one function that is
not in the ANSI C standard: strnicmp. On the Unix and Linux platforms, this function is
usually called strncasecmp. If you are using a GNU GCC compiler, but you are not compiling
for a Linux or “BSD” platform, you may need to define strnicmp as strncasecmp in the glue
file (see below). If your compiler provides neither strnicmp nor strncasecmp, you can use a
portable implementation in minIni by defining the macro PORTABLE_STRNICMP in the glue file
(or on the compiler command line).

A notable limitation of minIni is that there is a (fixed) maximum length of a line that can be
read from an ini file. This maximum length is configurable (at compile-time, not at run-time)
and it may be short on embedded systems —see page 4.

When running in an Unicode environment or when moving the ini file across platforms, there
may be other considerations concerning the use of minIni —see the relevant sections in this
chapter, specifically page 5.

The “glue” file

The minIni library must be configured for a platform with the help of a so-called “glue file”. This
glue file contains macros (and possibly functions) that map file reading and writing functions
used by the minIni library to those provided by the operating system. The glue file must be
called “minGlue.h”. See appendix A on page 15 for examples of glue files for various file systems.

One general configuration is whether internal error checking via “assertions” is active. The
minIni library uses the assert macro to help catch errors in the minIni library and/or catch
errors in how the application interfaces with the minIni library. To build a release version, one
typically recompiles all source code with the NDEBUG macro set.

In the case that your (embedded) platform lacks an assert.h file, you may want to define
NDEBUG in the minGlue.h file.

• I/O functions

The minIni source code requires functions from a file I/O library to perform the actual reading
and writing. This can be any library; minIni does not rely on the availability of a standard C
library, because embedded operating systems may have limited support for file I/O. Even on
full operating systems, separating the file I/O from the ini format parsing carries advantages,
because it allows you to cache the ini file and thereby enhance performance.

The functions that you need to implement, or map to standard file I/O functions are:



4 — The “glue” file

Listing: Functions to map in the “glue file”

int ini_openread(const char *filename, INI_FILETYPE *file)

int ini_openwrite(const char *filename, INI_FILETYPE *file)

int ini_close(INI_FILETYPE *file)

int ini_read(char *buffer, size_t size, INI_FILETYPE *file)

int ini_write(char *buffer, INI_FILETYPE *file)

int ini_rename(const char *source, const char *dest)

int ini_remove(const char *filename)

int ini_tell(INI_FILETYPE *file, INI_FILEPOS *pos)

int ini_seek(INI_FILETYPE *file, INI_FILEPOS *pos)

All functions should return zero on failure and a non-zero value on success. For examples of
“implementations” for the above functions, see appendix A on page 15.

The INI_FILETYPE type used in the above “glue” functions, must also be defined in the glue file.
If you are using the standard C/C++ file I/O library, this is the “FILE*” type of the standard
C/C++ file I/O library. On embedded systems with a different I/O library, chances are that
you need a different handle or “structure” to identify the storage. For example:

#define INI_FILETYPE HANDLE

The minIni functions will declare variables of the INI_FILETYPE type and pass these variables
to sub-functions (including the glue interface functions) by reference.

For read-only support of INI files (see also page 4), only the macros/functions ini_openread,
ini_close and ini_read are needed. The other functions are only needed for writing support.

The type that holds the “file position” (for functions ini_tell and ini_seek) must be declared
as well. For applications that use the standard C/C++ file I/O library functions fgetpos and
fsetpos, this is the fpos_t type.

#define INI_FILEPOS fpos_t

• Buffer size (maximum line length)

Another item that needs to be configured is the buffer size. The functions in the minIni library
allocate this buffer on the stack, so the buffer size is directly related to the stack usage. In
addition, the buffer size determines the maximum line length that is supported in the ini file
and the maximum path name length for the temporary file (for writing support). For example,
to limit the line length of the ini files to 512 characters, minGlue.h would contain the definition:

#define INI_BUFFERSIZE 512

• Read-only support

In its default configuration, minIni supports both reading and writing ini files. If your applica-
tion does not require write support, you can add a setting to the minGlue.h file to strip out the
unneeded code.

#define INI_READONLY
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When writing a setting to an ini file, minIni writes it to a temporary file, copies the other sections
and keys from the original ini file, and then replaces the original file with the temporary file.
This approach uses the least amount of memory. The path name of the temporary file is the
same as the input file, but with the last character set to a tilde (“~”).

Furthermore, when writing to the temporary file, minIni on repeatedly looks ahead in the ini

and jumps back to a position that it marked earlier. The goal of this design is to minimize
the number of individual “write actions” to the file, because on Flash memory (and EEPROM
memory), writing is an order of magnitude slower than reading.

• Rational number support

minIni optionally supports reading and writing single-precision floating point values —see func-
tions ini getf and ini putf. Embedded processors may lack floating point hardware and soft-
ware emulation of floating-point operations may be too costly in resources (memory). For these
platforms, alternatives are to switch to a fixed-point representation or, when rational numbers
are not relevant for the project, to disable the rational number support in minIni altogether.

To enable rational number support, a macro for the type and macros or interface functions for
number-to-text conversion must be added to minGlue.h. For the standard C/C++ library, you
can add the following definitions to the glue file:

#define INI_REAL float

#define ini_ftoa(string,value) sprintf((string),"%f",(value))

#define ini_atof(string) (INI_REAL)strtod((string),NULL)

For a different representation of rational numbers, only the definitions in minGlue.h have to
changes. The following example is based on the “fixedptc” library by Ivan Voras.

#define INI_REAL fixedpt

#define ini_ftoa(string,value) fixedpt_str((value),(string))

#define ini_atof(string) fixedpt_val((string))

To disable rational number support, remove the declaration macro for the INI_REAL type from
the minGlue.h file.

• Unicode (enable/disable)

minIni can be compiled with Unicode support, but it delegates storing the actual characters to
the “glue” routines. Although you can use standard Unicode file reading and writing routines
to create and query ini files in Unicode text format, it is advised to keep the ini file format as
ascii, for best compatibility with other implementations. To store Unicode characters in the
ascii file, convert the Unicode data to (and from) UTF-8 (the minIni library does not provide
functions for this conversion).

It is advised to keep the section and key names as ascii or ansi Latin-1; only the “values” of
each key should be encoded as UTF-8.

Currently, all distributions of Linux lack a header file called tchar.h which adds a portability
layer for source code that can be compiled as ascii or as Unicode. minIni relies on tchar.h

when compiling for Unicode. Therefore, when compiling a Unicode application under Linux,
you have two options: create a minimal version of tchar.h yourself, or compile minIni for the
8-bit ansi character set, while the remainder of the application is Unicode. To force-compile
minIni for ansi, add the definition INI_ANSIONLY in the glue file (“minGlue.h”). For example:

#define INI_ANSIONLY /* ignore UNICODE or _UNICODE macros, compile as ASCII/ANSI */



6 — The “glue” file

• Line termination

On Microsoft and DOS, lines of text files are usually terminated by a CR-LF character pair
(“\r\n” in C/C++ terminology). On Linux and Unix, the line terminator is only the LF char-
acter and on the Macintosh, it is only the CR character.

The line termination convention is not important when reading from ini files, because minIni

strips off all trailing white space (and control characters such as carriage-return and line-feed are
considered white space). The line termination convention is also not important when the ini file
is only accessed by minIni. Finally, if you use the standard C/C++ library as the back-end for
reading and writing files, this library already handles the platform-dependent line termination
for you.

However, if you wish to read and adjust the ini files with other applications, across platforms
—e.g. edit the ini file with a simple text editor as Notepad on Microsoft Windows and then store
it on an embedded device with a Linux-based operating system, then it may be advantageous
to tell minIni the line termination characters to use. To do so, define the macro INI_LINETERM

in the file “minGlue.h” and set it to the character or characters to use. For example:

#define INI_LINETERM "\r\n"

• Summary of configuration macros

INI ANSIONLY If this macro is defined, ini files are forced to be written with 8-bit characters
(ascii or ansi character sets), regardless of whether the remainder of the
application is written as Unicode. See page 5.

INI BUFFERSIZE The maximum line length that is supported, as well as the maximum path
length for temporary file (if write access is enabled). The default value is
512. See page 4.

INI FILEPOS The type for a position in a file. This is a required setting if writing support
is enabled.

INI FILETYPE The type for a variable that represents a file. This is a required setting. See
page 4.

INI LINETERM This macro should be set to the line termination character (or characters).
If left undefined, the default is a line-feed character. Note that the standard
file I/O library may translate a line-feed character to a carriage-return/line-
feed pair (this depends on the file I/O library). See page 6

INI NOBROWSE Excludes the function ini browse from the minIni library.

INI READONLY If this macro is defined, write access is disabled (and the code for writing
ini files is stripped from the minIni library. See page 4

INI REAL The type for a variable that represents a rational number. If left undefined,
rational number support is disabled. See page 5.

NDEBUG If defined, the assert macro in the minIni source code is disabled. Typi-
cally developers build with assertions enabled during development and dis-
able them for a release version. If your platform lacks an assert macro,
you may want to define the NDEBUG macro in minGlue.h.

PORTABLE STRNICMP

When this macro is defined, minIni uses an internal, portable strnicmp

function. This is required for platforms that lack this function —note that
minIni already handles the common case where this function goes under
the name strncasecmp. See page 3.
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Multi-tasking

The minIni library does not have any global variables and it does not use any dynamically
allocated memory. Yet, the library should not be considered “thread-safe” or re-entrant, because
it implicitly uses a particular shared resource: the file system.

Multiple tasks reading from an ini file do not pose a problem. However, when one task is writing
to an ini file, no other tasks should access this ini file —neither for reading, nor for writing. It
might be easier, in the implementation, to serialize all accesses of the ini file.

The first advise in protecting resources from concurrent access in a multi-tasking environment
is to avoid sharing resources between tasks. If only a single task uses a resource, no semaphore
protection is necessary and no priority inversion or deadlock problems can occur. This advise
also applies to the minIni library. If possible, make a single task the “owner” of the ini file and
create a client/server architecture for other tasks to query and adjust settings.

If the ini file must be shared between tasks (and at least one of the tasks writes to the ini file),
you need to write wrappers around the functions of the minIni library that block on a mutex
or binary semaphore.

Key and section enumeration

minIni can list all sections in an ini file and all keys in a section, in two alternative ways.∗ To
list all sections, call function ini getsection with an incremental “index” number until it fails.
Similarly, to list all keys in a section, call ini getkey with an incremental “index” number (plus
the name of the section) until it fails.

Listing: Browsing through all keys and all sections in “config.ini”

int s, k;

char section[40], key[40];

for (s = 0; ini_getsection(s, section, sizeof section, "config.ini") > 0; s++) {

printf("[%s]\n", section);

for (k = 0; ini_getkey(section, k, key, sizeof key, "config.ini") > 0; k++)

printf("\t%s\n", key);

} /* for */

Alternatively, call ini browse passing a callback function. The callback will be invoked for
every key/value pair that is read from the ini file.

Listing: Implementation of a callback function

int my_callback(const char *section, const char *key, const char *value, const void *userdata)

{

printf("[%s]\t%s=%s\n", section, key, value);

return 1;

}

Listing: Browse through an INI file called “config.ini”

char buffer[256];

ini_browse(my_callback, buffer, sizeof(buffer), NULL, "config.ini");

Note that the ini_browse function is excluded from the minIni library if the compiler macro
INI_NOBROWSE is defined, see page 6.

∗
. . . but both are different than how the function GetProfileString from the Microsoft Windows API does it.
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Function reference

In addition to the functions in plain C, minIni comes with a C++ class. When creating a variable
of the minIni class, you pass in the name of the ini file once, so that this name does not need
to be passed to every other function. The class exists for the standard C++ string library and
for wxWidgets, using the wxString type. The function reference only lists the methods with
the std::string type, but these are replaced by versions that use wxString when compiling
for wxWidgets.

minIni::minIni class constructor

The minIni constructor creates an instance of the minIni class.

Syntax: minIni(const std::string& filename)

filename The full file and path name of the ini file to use for all reads and
writes, through this instance.

Example: Creating a class instance to read a setting (C++ only):

minIni ini("config.ini");

std::string username = ini.gets("Users", "admin");

ini browse Browse through all settings

ini_browse reads through an ini file and invokes a callback for every key/value pair that it
reads.

Syntax: int ini browse(INI CALLBACK Callback, const void *UserData,

const TCHAR *Filename)

Callback A pointer to a callback function. See the notes for its definition.

UserData This value is passed to the callback function. The ini_browse func-
tion does not use this value itself.

Filename The full path name of the ini file.

Returns: 1/true on success, 0/false on failure.

Notes: The Callback function must have the following signature:

int Callback(const TCHAR *Section, const TCHAR *Key, const TCHAR *Value, const void *UserData)

The function is passed the names of the active section and key. The UserData

parameter is the same as what is passed to ini_browse.

Function ini_browse uses a local buffer to store the lines that it reads from the
ini file, plus to store the current “section” of the ini file. The size of this buffer is
INI_BUFFERSIZE, see page 4. This constant should therefore be configured to be
big enough to hold the longest line in the ini file, plus the longest section name.

The ini_browse function can be disabled (i.e. removed from the library) with the
compiler macro INI_NOBROWSE, see page 6.

Example: See page 7 for an example of ini_browse.
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minIni::del Delete a section or a key

Delete a key or an entire section.

Syntax: bool del(const std::string& Section, const std::string& Key)

bool del(const std::string& Section)

Section The name of the section.

Key The name of the key.

Returns: true on success, false on failure.

Notes: This method is the equivalent of ini_puts with the parameter Key and/or Value
parameters to NULL.

This function is unavailable if minIni is configured as a read-only library (page 4).

See also: ini puts

ini getbool / minIni::getbool Read a “truth” flag

ini_getbool returns the zero for false or one for true, depending on the value that is found in
the given section and at the given key.

Syntax: int ini getbool(const char *Section, const char *Key, int DefValue,

const char *Filename)

bool getbool(const std::string& Section, const std::string& Key,

bool DefValue=false)

Section The name of the section. If this parameter is NULL or an empty
string, the Key is searched outside any section.

Key The name of the key. This parameter may not be NULL.

DefValue The default value, which will be returned if the key is not present in
the ini file. Even though it is declared as an “int” in the C interface,
it should be either 0 (zero) or 1 (one).

Filename The full path name of the ini file. The C++ class uses the filename
specified in the class constructor.

Returns: The true/false flag as interpreted from the value read at the given key, or DefValue
if the key is not present in the given section (or if it cannot be interpreted to either
a “true” or a “false” flag).

Specifically, the return value depends on the first letter of the value read at the
key. If that first character is:
⋄ “Y”, “T” or “1”, the function returns true (or 1);
⋄ “N”, “F” or “0”, the function returns false (or 0);
⋄ anything else, the function returns parameter DefValue.

Notes: To set a boolean value in the C++ interface, use minIni::put; For the C interface,
use either ini putl. Alternatively, you can store texts like “Yes” and “No” at the
key using minIni::put and ini puts.

See also: ini getl
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ini getf / minIni::getf Read a rational number

ini_getf returns the numeric value that is found in the given section and at the given key. The
value may have a fractional part (i.e. rational numbers).

Syntax: INI REAL ini getf(const char *Section, const char *Key,

INI REAL DefValue, const char *Filename)

INI REAL getf(const std::string& Section, const std::string& Key,

INI REAL DefValue=0)

Section The name of the section. If this parameter is NULL or an empty
string, the Key is searched outside any section.

Key The name of the key. This parameter may not be NULL.

DefValue The default value, which will be returned if the key is not present in
the ini file.

Filename The full path name of the ini file. The C++ class uses the filename
specified in the class constructor.

Returns: The value read at the given key, or DefValue if the key is not present in the given
section.

Notes: Rational number support must have been enabled for this function to be present
—see page 5. The type for the rational numbers, INI_REAL, depends on the
configuration of minIni.

See also: ini getl, ini putf

ini getkey / minIni::getkey Enumerate keys

Read the name of an indexed key inside a given section.

Syntax: int ini getkey(const char *Section, int Index, char *Buffer,

int BufferSize, const char *Filename)

std::string getkey(const std::string& Section, int Index)

Section The name of the section. If this parameter is NULL or an empty
string, the keys outside any section are enumerated.

Index The zero-based index of the key to return.

Buffer The buffer into which this function will store the key name.

BufferSize The size of the buffer pointed at by parameter Buffer. This is the
maximum number of characters that will be read and stored.

Filename The full path name of the ini file. The C++ class uses the filename
specified in the class constructor.

Returns: The C function returns the number of characters read into parameter Buffer,
or zero if no (more) keys are present in the specified section. The C++ method
returns the name of the key in a string.

Example: Enumerating keys in section “Devices”:
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int k;

char name[20];

for (k = 0; ini_getkey("Devices", k, name, 20, "config.ini") > 0; k++)

printf("%s\n", name);

See also: ini getsection

ini getl / minIni::getl Read a numeric value

ini_getl returns the numeric value that is found in the given section and at the given key.

Syntax: long ini getl(const char *Section, const char *Key, long DefValue,

const char *Filename)

long getl(const std::string& Section, const std::string& Key,

long DefValue=0)

int geti(const std::string& Section, const std::string& Key,

int DefValue=0)

Section The name of the section. If this parameter is NULL or an empty
string, the Key is searched outside any section.

Key The name of the key. This parameter may not be NULL.

DefValue The default value, which will be returned if the key is not present in
the ini file.

Filename The full path name of the ini file. The C++ class uses the filename
specified in the class constructor.

Returns: The value read at the given key, or DefValue if the key is not present in the given
section.

Notes: The number must be in decimal format. If the key is present, but it does not
represent a decimal number, this function may return zero or an incorrect value.

See also: ini getf, ini gets, ini putl

ini gets / minIni::gets Read a string

ini_gets reads the textual value that is found in the given section and at the given key.

Syntax: int ini gets(const char *Section, const char *Key,

const char *DefValue, char *Buffer, int BufferSize,

const char *Filename)

std::string gets(const std::string& Section,

const std::string& Key,

const std::string& DefValue="")

Section The name of the section. If this parameter is NULL or an empty
string, the Key is searched outside any section.

Key The name of the key. This parameter may not be NULL.

DefValue The default value, which will be returned (in parameter Buffer) if
the key is not present in the ini file.

Buffer The buffer into which this function will store the data read.
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BufferSize The size of the buffer pointed at by parameter Buffer. This is the
maximum number of characters that will be read and stored.

Filename The full path name of the ini file. The C++ class uses the filename
specified in the class constructor.

Returns: The C function returns the number of characters read into parameter Buffer. The
C++ method returns the string read at the given key, or DefValue if the key is
not present in the given section.

See also: ini getl, ini puts

ini getsection / minIni::getsection Enumerate sections

ini_getsection reads the name of an indexed section.

Syntax: int ini getsection(int Index, char *Buffer, int BufferSize,

const char *Filename)

std::string getsection(int Index)

Index The zero-based index of the section to return.

Buffer The buffer into which this function will store the section name.

BufferSize The size of the buffer pointed at by parameter Buffer. This is the
maximum number of characters that will be read and stored.

Filename The full path name of the ini file. The C++ class uses the filename
specified in the class constructor.

Returns: The C function returns the number of characters read into parameter Buffer, or
zero if no (more) sections are present in the ini file. The C++ method returns the
name of the section in a string.

Example: Enumerating all sections in file “config.ini”:

int s;

char name[20];

for (s = 0; ini_getsection(s, name, 20, "config.ini") > 0; s++)

printf("%s\n", name);

See also: ini getkey

ini putf / minIni::put Store a rational number

ini_putf stores the numeric value that in the given section and at the given key. The numeric
value is written as a rational number, with a “whole part” and a fractional part.

Syntax: int ini putf(const char *Section, const char *Key, INI REAL Value,

const char *Filename)

bool put(const std::string& Section, const std::string& Key,

INI REAL Value)

Section The name of the section. If this parameter is NULL or an empty
string, the Key is stored outside any section (i.e. above the first
section, if the ini file has any sections).

Key The name of the key. This parameter may not be NULL.
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Value The value to write at the key and the section.

Filename The full path name of the ini file. The C++ class uses the filename
specified in the class constructor.

Returns: 1/true on success, 0/false on failure.

Notes: This function is unavailable if minIni is configured as a read-only library (page 4).
It is also unavailable if rational number support has not been enabled (page 5).

The type for the rational numbers, INI_REAL, depends on the configuration of
minIni.

See also: ini getf, ini putl

ini putl / minIni::put Store a numeric value

ini_putl stores the numeric value that in the given section and at the given key.

Syntax: int ini putl(const char *Section, const char *Key, long Value,

const char *Filename)

bool put(const std::string& Section, const std::string& Key,

long Value)

Section The name of the section. If this parameter is NULL or an empty
string, the Key is stored outside any section (i.e. above the first
section, if the ini file has any sections).

Key The name of the key. This parameter may not be NULL.

Value The value to write at the key and the section.

Filename The full path name of the ini file. The C++ class uses the filename
specified in the class constructor.

Returns: 1/true on success, 0/false on failure.

Notes: This function is unavailable if minIni is configured as a read-only library (page 4).

See also: ini getl, ini puts

ini puts / minIni::put Store a string

ini_puts stores the text parameter that in the given section and at the given key.

Syntax: int ini puts(const char *Section, const char *Key,

const char *Value, const char *Filename)

bool put(const std::string& Section, const std::string& Key,

const std::string& Value)

bool put(const std::string& Section, const std::string& Key,

const char* Value)

Section The name of the section. If this parameter is NULL or an empty
string, the Key is stored outside any section (i.e. above the first
section, if the ini file has any sections).
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Key The name of the key. If this parameter is NULL, the function erases
all keys (and their associated values) from the section.

Value The text to write at the key and the section. This string should
not contain any line breaking characters, such as carriage-return or
line-feed characters. If this parameter is NULL, the function erases
the key/value pair.

Filename The full path name of the ini file. The C++ class uses the filename
specified in the class constructor.

Returns: 1/true on success, 0/false on failure.

Notes: This function can also be used to delete entries or sections, by setting the Key or
Value parameters to NULL.

This function is unavailable if minIni is configured as a read-only library (page 4).

See also: ini gets, ini putl
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Example glue files
appendix a

• stdio (standard C/C++ library)

/* map required file I/O types and functions to the standard C library */

#include <stdio.h>

#define INI_FILETYPE FILE*

#define ini_openread(filename,file) ((*(file) = fopen((filename),"r")) != NULL)

#define ini_openwrite(filename,file) ((*(file) = fopen((filename),"w")) != NULL)

#define ini_close(file) (fclose(*(file)) == 0)

#define ini_read(buffer,size,file) (fgets((buffer),(size),*(file)) != NULL)

#define ini_write(buffer,file) (fputs((buffer),*(file)) >= 0)

#define ini_rename(source,dest) (rename((source), (dest)) == 0)

#define ini_remove(filename) (remove(filename) == 0)

#define INI_FILEPOS fpos_t

#define ini_tell(file,pos) (fgetpos(*(file), (pos)) == 0)

#define ini_seek(file,pos) (fsetpos(*(file), (pos)) == 0)

/* for floating-point support, define additional types and functions */

#define INI_REAL float

#define ini_ftoa(string,value) sprintf((string),"%f",(value))

#define ini_atof(string) (INI_REAL)strtod((string),NULL)

• CCS FAT library (http://www.ccsinfo.com)

#define INI_BUFFERSIZE 256 /* maximum line length, maximum path length */

#ifndef FAT_PIC_C

#error FAT library must be included before this module

#endif

#define const /* keyword not supported by CCS */

#define INI_FILETYPE FILE

#define ini_openread(filename,file) (fatopen((filename), "r", (file)) == GOODEC)

#define ini_openwrite(filename,file) (fatopen((filename), "w", (file)) == GOODEC)

#define ini_close(file) (fatclose((file)) == 0)

#define ini_read(buffer,size,file) (fatgets((buffer), (size), (file)) != NULL)

#define ini_write(buffer,file) (fatputs((buffer), (file)) == GOODEC)

#define ini_remove(filename) (rm_file((filename)) == 0)

#define INI_FILEPOS fatpos_t

#define ini_tell(file,pos) (fatgetpos((file), (pos)) == 0)

#define ini_seek(file,pos) (fatsetpos((file), (pos)) == 0)

#ifndef INI_READONLY

/* CCS FAT library lacks a rename function, so instead we copy the file to the

* new name and delete the old file

*/

static int ini_rename(char *source, char *dest)

{

FILE fr, fw;

int n;

if (fatopen(source, "r", &fr) != GOODEC)

return 0;

if (rm_file(dest) != 0)

return 0;

if (fatopen(dest, "w", &fw) != GOODEC)

return 0;

/* With some "insider knowledge", we can save some memory: the "source"

* parameter holds a filename that was built from the "dest" parameter. It

* was built in a local buffer with the size INI_BUFFERSIZE. We can reuse

* this buffer for copying the file.

*/

while (n=fatread(source, 1, INI_BUFFERSIZE, &fr))

fatwrite(source, 1, n, &fw);
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fatclose(&fr);

fatclose(&fw);

/* Now we need to delete the source file. However, we have garbled the buffer

* that held the filename of the source. So we need to build it again.

*/

ini_tempname(source, dest, INI_BUFFERSIZE);

return rm_file(source) == 0;

}

#endif

• EFSL (http://www.efsl.be/)

#define INI_BUFFERSIZE 256 /* maximum line length, maximum path length */

#define INI_LINETERM "\r\n" /* set line termination explicitly */

#include "efs.h"

extern EmbeddedFileSystem g_efs;

#define INI_FILETYPE EmbeddedFile

#define ini_openread(filename,file) (file_fopen((file), &g_efs.myFs, (char*)(filename), ’r’) == 0)

#define ini_openwrite(filename,file) (file_fopen((file), &g_efs.myFs, (char*)(filename), ’w’) == 0)

#define ini_close(file) file_fclose(file)

#define ini_read(buffer,size,file) (file_read((file), (size), (buffer)) > 0)

#define ini_write(buffer,file) (file_write((file), strlen(buffer), (char*)(buffer)) > 0)

#define ini_remove(filename) rmfile(&g_efs.myFs, (char*)(filename))

#define INI_FILEPOS euint32

#define ini_tell(file,pos) (*(pos) = (file)->FilePtr))

#define ini_seek(file,pos) file_setpos((file), (*pos))

#if ! defined INI_READONLY

/* EFSL lacks a rename function, so instead we copy the file to the new name

* and delete the old file

*/

static int ini_rename(char *source, const char *dest)

{

EmbeddedFile fr, fw;

int n;

if (file_fopen(&fr, &g_efs.myFs, source, ’r’) != 0)

return 0;

if (rmfile(&g_efs.myFs, (char*)dest) != 0)

return 0;

if (file_fopen(&fw, &g_efs.myFs, (char*)dest, ’w’) != 0)

return 0;

/* With some "insider knowledge", we can save some memory: the "source"

* parameter holds a filename that was built from the "dest" parameter. It

* was built in buffer and this buffer has the size INI_BUFFERSIZE. We can

* reuse this buffer for copying the file.

*/

while (n=file_read(&fr, INI_BUFFERSIZE, source))

file_write(&fw, n, source);

file_fclose(&fr);

file_fclose(&fw);

/* Now we need to delete the source file. However, we have garbled the buffer

* that held the filename of the source. So we need to build it again.

*/

ini_tempname(source, dest, INI_BUFFERSIZE);

return rmfile(&g_efs.myFs, source) == 0;

}

#endif
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• FatFs & Tiny-FatFs (http://elm-chan.org/)

#define INI_BUFFERSIZE 256 /* maximum line length, maximum path length */

/* You must set _USE_STRFUNC to 1 or 2 in the include file ff.h (or tff.h)

* to enable the "string functions" fgets() and fputs().

*/

#include "ff.h" /* include tff.h for Tiny-FatFs */

#define INI_FILETYPE FIL

#define ini_openread(filename,file) (f_open((file), (filename), FA_READ+FA_OPEN_EXISTING) == FR_OK)

#define ini_openwrite(filename,file) (f_open((file), (filename), FA_WRITE+FA_CREATE_ALWAYS) == FR_OK)

#define ini_close(file) (f_close(file) == FR_OK)

#define ini_read(buffer,size,file) f_gets((buffer), (size),(file))

#define ini_write(buffer,file) f_puts((buffer), (file))

#define ini_rename(source,dest) (f_rename((source), (dest)) == FR_OK)

#define ini_remove(filename) (f_unlink(filename) == FR_OK)

#define INI_FILEPOS DWORD

#define ini_tell(file,pos) (*(pos) = f_tell((file)))

#define ini_seek(file,pos) (f_lseek((file), *(pos)) == FR_OK)

• “Memory Disk Drive” file system (Microchip)

#define INI_BUFFERSIZE 256 /* maximum line length, maximum path length */

#include "MDD File System\fsio.h"

#include <string.h>

#define INI_FILETYPE FSFILE*

#define ini_openread(filename,file) ((*(file) = FSfopen((filename), FS_READ)) != NULL)

#define ini_openwrite(filename,file) ((*(file) = FSfopen((filename), FS_WRITE)) != NULL)

#define ini_close(file) (FSfclose(*(file)) == 0)

#define ini_write(buffer,file) (FSfwrite((buffer), 1, strlen(buffer), (*file)) > 0)

#define ini_remove(filename) (FSremove((filename)) == 0)

#define INI_FILEPOS long

#define ini_tell(file,pos) (*(pos) = FSftell(*(file)))

#define ini_seek(file,pos) (FSfseek(*(file), *(pos), SEEK_SET) == 0)

/* Since the Memory Disk Drive file system library reads only blocks of files,

* the function to read a text line does so by "over-reading" a block of the

* of the maximum size and truncating it behind the end-of-line.

*/

static int ini_read(char *buffer, int size, INI_FILETYPE *file)

{

size_t numread = size;

char *eol;

if ((numread = FSfread(buffer, 1, size, *file)) == 0)

return 0; /* at EOF */

if ((eol = strchr(buffer, ’\n’)) == NULL)

eol = strchr(buffer, ’\r’);

if (eol != NULL) {

/* terminate the buffer */

*++eol = ’\0’;

/* "unread" the data that was read too much */

FSfseek(*file, - (int)(numread - (size_t)(eol - buffer)), SEEK_CUR);

} /* if */

return 1;

}

#ifndef INI_READONLY

static int ini_rename(const char *source, const char *dest)

{

FSFILE* ftmp = FSfopen((source), FS_READ);

FSrename((dest), ftmp);

return FSfclose(ftmp) == 0;

}

#endif
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License
appendix b

The software product “minIni” is copyright c© 2008–2012 by CompuPhase. minIni is distributed
under the “Apache License” version 2.0 (http://www.apache.org/licenses/), which is reproduced
below, plus an exception clause to explicitly allow static linking.

EXCEPTION TO THE APACHE 2.0 LICENSE

As a special exception to the Apache License 2.0 (and referring to the definitions in Section 1 of this license), you

may link, statically or dynamically, the “Work” to other modules to produce an executable file containing portions of

the “Work”, and distribute that executable file in “Object” form under the terms of your choice, without any of the

additional requirements listed in Section 4 of the Apache License 2.0. This exception applies only to redistributions

in “Object” form (not “Source” form) and only if no modifications have been made to the “Work”.

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1

through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are

under common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or

indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership

of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications, including but not limited to software source

code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a Source form,

including but not limited to compiled object code, generated documentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under the License, as

indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix

below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from)

the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a

whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works

that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works

thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and any modifications

or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion

in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the

copyright owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or written

communication sent to the Licensor or its representatives, including but not limited to communication on electronic

mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the

Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously

marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been

received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants

to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce,

prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such

Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants

to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section)

patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such

license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their

Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was

submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit)

alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent

infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the

date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium,

with or without modifications, and in Source or Object form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of this License; and
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b. You must cause any modified files to carry prominent notices stating that You changed the files; and

c. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trade-

mark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain

to any part of the Derivative Works; and

d. If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that You

distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding

those notices that do not pertain to any part of the Derivative Works, in at least one of the following places:

within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation,

if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and

wherever such third-party notices normally appear. The contents of the NOTICE file are for informational

purposes only and do not modify the License. You may add Your own attribution notices within Derivative

Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that

such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license

terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works

as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions

stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted

for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without

any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms

of any separate license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product

names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work

and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work

(and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CON-

DITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions

of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You

are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks

associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract,

or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in

writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or

consequential damages of any character arising as a result of this License or out of the use or inability to use the

Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction,

or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of

such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You

may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations

and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own

behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify,

defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor

by reason of your accepting any such warranty or additional liability.
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