sfepy.terms.terms_piezo module¶
- class sfepy.terms.terms_piezo.PiezoCouplingTerm(name, arg_str, integral, region, **kwargs)[source]¶
Piezoelectric coupling term. Can be evaluated.
- Definition
\int_{\Omega} g_{kij}\ e_{ij}(\ul{v}) \nabla_k p \mbox{ , } \int_{\Omega} g_{kij}\ e_{ij}(\ul{u}) \nabla_k q
- Call signature
dw_piezo_coupling
(material, virtual, state)
(material, state, virtual)
(material, parameter_v, parameter_s)
- Arguments 1
material : g_{kij}
virtual : \ul{v}
state : p
- Arguments 2
material : g_{kij}
state : \ul{u}
virtual : q
- Arguments 3
material : g_{kij}
parameter_v : \ul{u}
parameter_s : p
- arg_shapes = {'material': 'D, S', 'parameter_s': 1, 'parameter_v': 'D', 'state/div': 'D', 'state/grad': 1, 'virtual/div': (1, None), 'virtual/grad': ('D', None)}¶
- arg_types = (('material', 'virtual', 'state'), ('material', 'state', 'virtual'), ('material', 'parameter_v', 'parameter_s'))¶
- modes = ('grad', 'div', 'eval')¶
- name = 'dw_piezo_coupling'¶
- class sfepy.terms.terms_piezo.PiezoStrainTerm(name, arg_str, integral, region, **kwargs)[source]¶
Evaluate piezoelectric strain tensor.
It is given in the usual vector form exploiting symmetry: in 3D it has 6 components with the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has 3 components with the indices ordered as [11, 22, 12].
Supports ‘eval’, ‘el_avg’ and ‘qp’ evaluation modes.
- Definition
\int_{\Omega} g_{kij} e_{ij}(\ul{u})
- Call signature
ev_piezo_strain
(material, parameter)
- Arguments
material : g_{kij}
parameter : \ul{u}
- arg_shapes = {'material': 'D, S', 'parameter': 'D'}¶
- name = 'ev_piezo_strain'¶
- class sfepy.terms.terms_piezo.PiezoStressTerm(name, arg_str, integral, region, **kwargs)[source]¶
Evaluate piezoelectric stress tensor.
It is given in the usual vector form exploiting symmetry: in 3D it has 6 components with the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has 3 components with the indices ordered as [11, 22, 12].
Supports ‘eval’, ‘el_avg’ and ‘qp’ evaluation modes.
- Definition
\int_{\Omega} g_{kij} \nabla_k p
- Call signature
ev_piezo_stress
(material, parameter)
- Arguments
material : g_{kij}
parameter : p
- arg_shapes = {'material': 'D, S', 'parameter': '1'}¶
- arg_types = ('material', 'parameter')¶
- name = 'ev_piezo_stress'¶
- class sfepy.terms.terms_piezo.SDPiezoCouplingTerm(*args, **kwargs)[source]¶
Sensitivity (shape derivative) of the piezoelectric coupling term.
- Definition
\int_{\Omega} \hat{g}_{kij}\ e_{ij}(\ul{u}) \nabla_k p
\hat{g}_{kij} = g_{kij}(\nabla \cdot \ul{\Vcal}) - g_{kil}{\partial \Vcal_j \over \partial x_l} - g_{lij}{\partial \Vcal_k \over \partial x_l}
- Call signature
ev_sd_piezo_coupling
(material, parameter_u, parameter_p, parameter_mv)
- Arguments
material : g_{kij}
parameter_u : \ul{u}
parameter_p : p
parameter_mv : \ul{\Vcal}
- arg_shapes = {'material': 'D, S', 'parameter_mv': 'D', 'parameter_p': 1, 'parameter_u': 'D'}¶
- arg_types = ('material', 'parameter_u', 'parameter_p', 'parameter_mv')¶
- geometries = ['2_3', '2_4', '3_4', '3_8']¶
- get_function(mat, par_u, par_p, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- name = 'ev_sd_piezo_coupling'¶